Higher composition laws II : On cubic analogues of Gauss composition
نویسندگان
چکیده
In our first article [2] we developed a new view of Gauss composition of binary quadratic forms which led to several new laws of composition on various other spaces of forms. Moreover, we showed that the groups arising from these composition laws were closely related to the class groups of orders in quadratic number fields, while the spaces underlying those composition laws were closely related to certain exceptional Lie groups. In this paper, our aim is to develop analogous laws of composition on certain spaces of forms so that the resulting groups yield information on the class groups of orders in cubic fields; that is, we wish to obtain genuine “cubic analogues” of Gauss composition. The fundamental object in our treatment of quadratic composition [2] was the space of 2 × 2 × 2 cubes of integers. In particular, Gauss composition arose from the three different ways of slicing a cube A into two 2× 2 matrices Mi, Ni (i = 1, 2, 3). Each such pair (Mi, Ni) gives rise to a binary quadratic form Qi (x, y) = Qi(x, y), defined by Qi(x, y) = −Det(Mix + Niy). The Cube Law of [2] declares that as A ranges over all cubes, the sum of [Q1], [Q2], [Q3] is zero. It was shown in [2] that the Cube Law gives a law of addition on binary quadratic forms that is equivalent to Gauss composition. Various other invariant-theoretic constructions using the space of 2 × 2 × 2 cubes led to several new composition laws on other spaces of forms. Furthermore, we showed that each of these composition laws gave rise to groups that are closely related to the class groups of orders in quadratic fields. Based on the quadratic case described above, our first inclination for the cubic case might be to examine 3× 3× 3 cubes of integers. A 3× 3× 3 cube C can be sliced (in three different ways) into three 3 × 3 matrices Li,Mi, Ni (i = 1, 2, 3). We may therefore obtain from C three ternary cubic forms f1(x, y, z), f2(x, y, z), f3(x, y, z), defined by
منابع مشابه
Higher composition laws III : The parametrization of quartic rings
In the first two articles of this series, we investigated various higher analogues of Gauss composition, and showed how several algebraic objects involving orders in quadratic and cubic fields could be explicitly parametrized. In particular, a central role in the theory was played by the parametrizations of the quadratic and cubic rings themselves. These parametrizations are beautiful and easy ...
متن کاملHigher composition laws and applications
In 1801 Gauss laid down a remarkable law of composition on integral binary quadratic forms. This discovery, known as Gauss composition, not only had a profound influence on elementary number theory but also laid the foundations for ideal theory and modern algebraic number theory. Even today, Gauss composition remains one of the best ways of understanding ideal class groups of quadratic fields. ...
متن کاملHigher Composition Laws I: A New View on Gauss Composition, and Quadratic Generalizations
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive...
متن کاملKummer, Eisenstein, Computing Gauss Sums as Lagrange Resolvents
In fact, [Eisenstein 1850] evaluated cubes and fourth powers of Gauss sums attached to cubic and quartic characters to prove the corresponding reciprocity laws. One essential point is the p-adic approximation of Gauss sums by [Kummer 1847], generalized in [Stickelberger 1890]. Since the rings of algebraic integers generated by third or fourth roots of unity have class number one and finitely-ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005